Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting.

نویسندگان

  • Jin Soo Kang
  • Yoonsook Noh
  • Jin Kim
  • Hyelim Choi
  • Tae Hwa Jeon
  • Docheon Ahn
  • Jae-Yup Kim
  • Seung-Ho Yu
  • Hyeji Park
  • Jun-Ho Yum
  • Wonyong Choi
  • David C Dunand
  • Heeman Choe
  • Yung-Eun Sung
چکیده

Nanostructured metal oxide semiconductors have shown outstanding performances in photoelectrochemical (PEC) water splitting, but limitations in light harvesting and charge collection have necessitated further advances in photoelectrode design. Herein, we propose anodized Fe foams (AFFs) with multidimensional nano/micro-architectures as a highly efficient photoelectrode for PEC water splitting. Fe foams fabricated by freeze-casting and sintering were electrochemically anodized and directly used as photoanodes. We verified the superiority of our design concept by achieving an unprecedented photocurrent density in PEC water splitting over 5 mA cm-2 before the dark current onset, which originated from the large surface area and low electrical resistance of the AFFs. A photocurrent of over 6.8 mA cm-2 and an accordingly high incident photon-to-current efficiency of over 50 % at 400 nm were achieved with incorporation of Co oxygen evolution catalysts. In addition, research opportunities for further advances by structual and compositional modifications are discussed, which can resolve the low fill factoring behavior and improve the overall performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation and optimization of mass transport of redox species in silicon microwire-array photoelectrodes.

Physical integration of a Ag electrical contact internally into a metal/substrate/microstructured Si wire array/oxide/Ag/electrolyte photoelectrochemical solar cell has produced structures that display relatively low ohmic resistance losses, as well as highly efficient mass transport of redox species in the absence of forced convection. Even with front-side illumination, such wire-array based p...

متن کامل

Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode

Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the energy conversion efficiency of photoelectrochemical water splitting. Here we demonstrate a self-orga...

متن کامل

Nearly Total Solar Absorption in Ultrathin Nanostructured Iron Oxide for Efficient Photoelectrochemical Water Splitting

We demonstrate using first-principles full-field electromagnetic simulations that nearly total above-band-gap solar absorption can be achieved in ultra-thin-film iron oxide photoanodes for water splitting applications. In our designed structure, all regions of iron oxide are away from the interface between iron oxide and water by a distance of less than the hole diffusion length, which is assum...

متن کامل

Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting

Articles you may be interested in Carbon quantum dots coated BiVO4 inverse opals for enhanced photoelectrochemical hydrogen generation Appl. Electrochemical deposition of iron sulfide thin films and heterojunction diodes with zinc oxide Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide Appl.

متن کامل

Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling

Various tandem cell configurations have been reported for highly efficient and spontaneous hydrogen production from photoelectrochemical solar water splitting. However, there is a contradiction between two main requirements of a front photoelectrode in a tandem cell configuration, namely, high transparency and high photocurrent density. Here we demonstrate a simple yet highly effective method t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Angewandte Chemie

دوره 56 23  شماره 

صفحات  -

تاریخ انتشار 2017